jﬂ DEPARTMENT OF

]D ENGINEERING [
» SCIENCE. KRGS

QCMP: Load Balancing via In-network
Reinforcement Learning

Changgang Zheng®*, Benjamin Rienecker*, Noa Zilberman

E-mail: changgang.zheng@eng.ox.ac.uk

Computing Infrastructure Group, University of Oxford
SIGCOMM FIRA 2023, 10t of September

* Changgang Zheng and Benjamin Rienecker contributed equally to this work.



mailto:changgang.zheng@eng.ox.ac.uk

UNIVERSITY OF

SCIENCE OXFORD

Background: Load Balancing %g ENGINEERING

Three Common Load Balancing Solutions:

1. Centralized controller-based Network device

."(

2. Host-based
3. Switch-based

: " ,QIE!

§]~ ..

Servers
l. ECMP & servers
" CONGA Network Controller
l. HULA )

Fixed load balancing policies, unable to dynamically adapt to unknown
environments.
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Background: In-Network ML %6 ENGINEERING
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In-network ML refers to offloading inference or entire ML
processes to the network.

In-Network Machine Learning Decision

J
o

N
& Server
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What Is In-Network Machine Learning? %g T
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General Machine Learning vs In-Network Machine Learning

Local PC, Servers, ... Location Network Infrastructures
CPU, GPU, ... Device = &) =081
PISA
C, Python, MATLAB, ... Language P4
Training & Inference Manner Offline Training Online Inference
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Why In-Network Q-Learning? i's ENGINEERING

Requirements:

1. Low Complexity
2. Low Latency (Offline)

Q-Learning:

1. Model-Free

2. Value-Based
3. Offline Learning

]Ij SCIENCE OXFORD

Algorithm 1: Q-learning

1
2

3
4

5
6
74
8
9

Initialize:Q(s,a) arbitrarily

Repeat // for each episode

Initialize s;

Repeat // for each step of episode

a < Q(,) and s using policy e.g., e-greedy;

Take action a — observe r and s’;

Q(s,@) — Q(s,a) + a[r + ymaxgQ(s’a’) - Q(s.a)];

S §’;

while step is not terminal,
while episode is not terminal,
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Challenges %6 e
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Resources on network devices are very limited compared to PC or
servers.

— @ [ N [ N [ i
||| ||| I =

Limited mathematical operations
Limited memory

Limited data types

Limited stages

hON =
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(a) Register-based Q-learning
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(b) M/A table-based Q-learning
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Q-Learning Cost Multi-Path (QCMP) %g ERGIEERING
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Data Plane
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Control Plane
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Summary i
Q: What is the limitation of current load balancing solutions?

A: Cannot dynamically adapt to unknown environments.

Q: How to realize in-network Q-learning?
A: Introduced register-based & M/A table-based Q-learning

Q: How to solve the load balancing problem?
A: QCMP (with M/A table-based Q-learning).

Q: How to realize other in-network machme learning algorithms?
A: Use Planter framework: Eff,:::;'f . "+ PLANTER
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